

INSPIRE™ T710-25 ES

Trinseo - Performance Polymers

Tuesday, November 5, 2019

General Information

Product Description

T710-25 ES Polypropylene Resin DA™ is a high impact TPO with enhanced flow, scratch and mar, and surface aesthetics for excellent molded-in-color appearance for automotive interior applications.

Main Characteristics:

- Tiger stripe free
- Slip agent
- Approved on DaimlerChrysler MS-DB500

General

Material Status	• Commercial: Active		
Availability	• North America		
Additive	• Slip		
Features	• Good Scratch Resistance	• Pleasing Surface Appearance	
	• High Impact Resistance	• Slip	
Uses	• Automotive Applications	• Automotive Interior Parts	
Automotive Specifications	• CHRYSLER MS-DB-500		
Forms	• Pellets		
Processing Method	• Injection Molding		

ASTM & ISO Properties ¹

Physical	Nominal Value	Unit	Test Method
Density / Specific Gravity	0.899		ASTM D792
Melt Mass-Flow Rate (230°C/2.16 kg)	27	g/10 min	ASTM D1238
Mechanical	Nominal Value	Unit	Test Method
Tensile Stress (Yield)	2840	psi	ISO 527-2/50
Flexural Modulus ²	140000	psi	ISO 178
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength			ISO 179/1eA
-40°F	2.6	ft·lb/in ²	
73°F	23	ft·lb/in ²	
Instrumented Dart Impact ³			ASTM D3763
-20°F, Ductile	407	in·lb	
73°F, Ductile	266	in·lb	
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature (66 psi, Unannealed)	171	°F	ISO 75-2/Bf
Heat Deflection Temperature (264 psi, Unannealed)	118	°F	ISO 75-2/Af

Notes

¹ Typical properties: these are not to be construed as specifications.

² 0.079 in/min

³ 21.7 ft/sec

UL and the UL logo are trademarks of UL LLC © 2019. All Rights Reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.